If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+60x-7200=0
a = 2; b = 60; c = -7200;
Δ = b2-4ac
Δ = 602-4·2·(-7200)
Δ = 61200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{61200}=\sqrt{3600*17}=\sqrt{3600}*\sqrt{17}=60\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60\sqrt{17}}{2*2}=\frac{-60-60\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60\sqrt{17}}{2*2}=\frac{-60+60\sqrt{17}}{4} $
| X^2+11x+61=-4x+5 | | -164-x=-9x+92 | | 7n-1=2 | | )x-3=-15+2 | | x=75+2x | | 20=-16t^2+40t | | -25-6x=10-7x | | -39+8=6-(8p+2) | | -162-2x=8x+138 | | X^2-5x+12=2x+6 | | 2/3x-1/4=1/2x+1/6 | | 4x-1=x+29 | | 564=-6(-10x+16) | | 8(6x-3)=-360 | | 6y+4=-4(y+9) | | 4t^2+9t^2=9 | | 6x^-19x-7=0 | | 9y+2=-8(y+4) | | -350=5(7x-7) | | 3(u+4)-5u=2 | | -8w+6(w-3)=-2 | | 6(-5x-13=-228) | | 6(-5x-13=-228 | | 5(v+7)+4v=-10 | | 3x+54=3x | | 402=6(-9x-5) | | 10+3b=7b-2 | | 8x^2-600x+5625=0 | | -(5x/3)+1=21 | | d-4+2=3d+1d | | (5x+6)+79=180 | | 10-3k=7k |